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Abstract

Intrinsi¢ population growth rate {.x) is an important parameter for many ecological
applications, sdch as population risk assessment and harvest management. Hpyeasr be
a difficult parameter to estimate, particularly for ldngd species, for which appropriate life
table data or abundance tiseries are typically not obtainable. We describe a method for
improving _estimates afax for longdived species by integrating |Hieistory theory (hometric
models) andpopulatiospecific demographic data (life table models). Broad allometric
relationshipspsuch as those between life history traits and body sizephg\eekn recognized
by ecologists. These relationships are useful for deriviagréiical expectations foax, but
Imax for real populations may vary from simple allometric estimator&aiamhetypical’species
of a given taxa,or body mass. Meanwhile, life table approaches can provide pompatdic
estimateS.ofmaxfrom empircal data but these may have poor precision from imprecise and
missing vital rate parameter estimates. Our method borrows strengthdtbrapproaches to
provide estimates that are consistent with bothHigtory theory and populatiospecific
empiricd data, and are likely to be more robust than estimates provided by either method alone.
Our method uses an allometric constant: the produgt.Qtnd the associated generation time
for a stableage population growing at this rate. We conducted a aredysis to estimate the
mean andivariance of this allometric constant acrosssivelied populations from three
vertebratetaxa(birds, mammals, and elasmobranchs) andtfatttte mean was
approximately™.0 for each taxon. We used these as informadivesin priors that determine
how mueh™to “shrink'imprecise vital rate estimates for a diaited population toward the
allometric expectation. The approach ultimately provides estimatgg.dfind other vital rates)
that reflect a balance of inforniaih from the individual studied population, theoretical

expectation, and metnalysis of other populations. We applied the method specifically to an
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archetypical petrel (representing the geRuscellaria) and to white shark<Carcharodon
carcharias) in the context of estimating sustainable fishery bycatch limits.

Key words:

allometric (rT) models, Bayesian analysis, demography; integrated population models; intrinsic
growth rate; life-table models; long-lived species; population dynamics, Procellaria; white
shark, Carcharedon carcharias

Introduction

The intrinsic rate of increase is the maximum potential exponential growttiaase
population can achieve under optimal resource conditions in its environment (Caughley 1977). It
is a key parameter for darstanding lifenistory evolution and population dynamics, and is
important in‘many conservation applications. Intrinsic growth and related ewaseen
variously defined in the literature (€.Gmax 'ms lNntrinsic, 7 ; Caughley 1977, Niel and Lebreton
2005, Gedamke et al. 2007, Fagan et al. 2010). For practical application purposes, ouisinterest
the maximum growth rate that would be possible for a real-world, low-density populaggra(e
small founding_group, or one &arly stages of recovery from severe depletion) with a stable age
distributionin“a’broadly favorable natural environment, which we referng.,adn wildlife and
fisheries management,.x may be used for projecting population recovery times, conducting
population viability analyses, or estimating exploitation or removal rates thhraspond to
management targets or thresholds. For example, many species of marine megafauna are impacted
by incidental.catch (or bycatch) from fisheries (Lewison et al42Bore et al. 2013). For
these datgoor. species, the intrinsic growth rate is a fundamental parameter for estimating
incidental fisherycatch limits (Moore et al. 2013) and conducting certain types of Ecological
Risk Assessments (ERAS) based on theofi$&oductivity and Susceptibility Analyses (PSAS)
(Cortés etal. 2010, Hobday et al. 2011).

Unfortunately, intrinsic growth rates are difficult to estimate for many species or
populationsyparticularly for many loryed, datalimited species in need attive management.
For example,.under the U.S. Marine Mammal Protection Act, bycatch mortality dareem
mammal population must be below an estimate of Potential Biological Removal (PBR) or else
management procedures to reduce bycatch must be initt&dis calculated as a function of

population abundance and intrinsic growth rate estimates (Wade 1998, Taylor et al. 2000). The
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latter is unknown for most populations, so default values are typically used (0.04 teacsta
0.12 for pinnipeds), but thegpropriateness of these defaults has not been fully evaluated.
Obtaining species- or populati@pecific estimates of the intrinsic growth rate would therefore

improve the PBR management scheme.

Intrinsicigrowth rates may be estimated directly or thraughel-based approaches.
Direct estimationrequires fairly long time series (relative to generation time) of abundance
estimatesfor faggrowing (e.g., recovering) populations whose growth rates are not yet limited
by resource availability artthathave ag distributions at least close to the stable age
distribution, \WWhere these circumstances exist, regression methods fotiagtiavarage growth
rate as a function of time or population abundance are straightforward to implemgent (e
Eberhardt and Simmons 1992, de Valpine and Hastings 2002, Morris and Doak 2002, Sibly et al.
2005, Clark et al. 2010). However, such data are not usually available, particulagytéon
types of species, e.g., the lolnged and latematuring marine species that motivate our research,
whose age"asirst reproduction can be >10 years argphies are decades. Such species are
particularly sensitive to human impacts on survival rates (Heppd!llE2%0, 2005). For these
species, direct estimates of intrinsic growth generally require decades of data, usually from well
monitored populations recovering from intensive human exploitation after effecthservation
measures.have,been put in place (e.g., Best 1993, Balazs and Chaloupka 2004). Few large marine
vertebrate poputens fit these criteria. Therefore, despite any limitations from simplifying
assumptions=(e:g., simplified biology, ignoring dendipendence or senescence), mddeaied
approaches to estimatingax are more common and more practical, at least foettyges of

species.

Inthe.wildlife demography literature, there are two general classes of-treskd
methodsforestimatingnax Or Amax = €XPfmax) for most populations of lontived species:
analysis of life table methods, and lliestory theory an@llometric scaling relationships. For
purposes of the current analysis, we refer to life table methods in the senseilatioglr ax
from estimates of annual survival and reproductive rates (in presumably nimgliregource
conditions) using matrix algebra methods (e.g., eigenanalysis or solving the chstracteri
equation; Caswell 2001) or solving the discrete form of the Bultka equationfor good
methodological overviews, see Skalski et al. 2008, Fagan et al. 2010). Allometric methods us
empirically verified relationships across species within broad taxonomic groups between

This article is protected by copyright. All rights reserved



demographic rates (e.g., survival rates,dpan, age at maturity) and organismal characteristics
(namely body size or metabolic rate) to make inference about populatiwthgate from

relatively few input parameters (e.g., Hennemann 1983, Savage et a,2004| and

Lebreton=20055 Hone et al. 2010). Both approaches have been used to assess riskved long-
populations. For example, PSAs for sharks have used estimates aferived from matrix

models(Cortés,2002, Simpfendorfer et al. 2008, Cortés et al. 20€Yeas allometric models
have beenused in developing estimatgsoténtial biological removal (PBR) for birds (Niel and
Lebreton 2005, Dillingham and Fletcher 2008, 2011, Dillingham 2010, Richard and Abraham
2013).

Thetwortypes of model-based approaches have individual advantagedso individual
shortcomings. The advantage of using life table methods is that estimatgsaafcount for
age-structured demographic rates and these are empirically informed for theipomila
interest. However, it is difficult to know whether field measures of demograatas correspond
to those thatwould be observed for a population growing.g(Gedamke et al. 2007, Fagan et
al. 2010). Parameterizing a matrix model (or Elletka equation) may also be hampered by
data limitatiens (error in parameter estimates) and structural uncertainties about the life history
schedule«(i"e., matrix dimensionality and how many parameters to inchaedeleppell et al.

(2000) and Lynch and Fagan (2009).

The advantage of using allometric methods is that these require fewer variables than life
table or matrix model approaches and fewer data from the particular study jpop(Rather,
I max €Stimates are informed by wastablished evolutiomgarelationships between, for example,
body size'and various demographic rates. However, these methods are equally sengtixe t
parameter uneertainty and only provide theoretical or expected value estrhptgulation
growth (e.g., given an estingaof body size or age at maturity). As a result, an allometric
approach ‘canfail to fully account for populatien-speciedevel variation in demographic
complexity, given that individual populations are expected to deviate from the Ygreéhet
(Savageet al. 2006, Ginzburg et al. 2010). For example, Hone et al. (2010) found for mammals a
strong relationship between field estimates of population growth rates andraggidty, but
growth rates for individual species could not be predicted precisely from thensiap.
Moreover, there remains uncertainty in allometric scaling relationdbigscén et al. 2007) due,
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at least in partto methodological difficulties or inconsistencies in empirically testing the
underlying theories (Fagan et al. 2010).

We present a general approach that draws on the strengths of both types abasedel-
methods.to _provide estimatesrgfy that are consistent with both allometric theory and
populationspecific empirical data, and that may therefore be more robust than estimates
provided by-eithermethod alone.

Methods

Background

For longlived species in particular, estimates gix from either life table or allometric
methods are strongly influenced by estimates of maximum adult survival. Howevegdlie bi
I'max (from errorin survival estimates) occurs in opposite directions for the two typestbbds,

a fact thatowe"exploit in our model development. For matrix models, higher survived {edde

to higherr paxvalues when other demographic parameters remain constant. ACross species,
however, many,parameters are correlated, and allometric models show that species with higher
survival rates generally have lowsf.x values because of the evolutionary trafiebetween
survival §) andireproductive output (Williams 196Bharnov 2005). For populations that are
impacted by.anthropogenic mortality (e.g., bycatch in fisheries, hunting), use of empirical
estimates o$ will either underestimatenax (€.9., matrix models) or overestimatex (e.g.,
allometricrmodels) (Dilligham and Fletcher 2008). The differences between the two methods
can be striking, highlighting the potential risk from using empirical estimatetutifsaurvival to
estimater max USINg either method alone. Rbe petrekxample described in Table 1, tiieg an
empirical estimate of survival that incorporates substantial bycatch morsatit9.89; Barbraud

et al. 2008).as.if it represented maximum survival would yield estimates.cf 0.088 using a
particular allometric modedeémographic invariant method)M; Niel and Lebreton 2005) and
I'max = 0.006"USIing a matrix model. For some species (e.g., sharks), little is known about adult
survivalgand either method would perform poorly. More generally, when there is paramete
uncertaintyeach method can produce estimates,gf discordant with the other: e.g., allometric
estimates of max that require breeding success ratdsor similar impossibilities, or matrix

model estimates of,ax that are strongly inconsistent with ecological allometric thedng. T

approach we describe in this paper is to analytically identify combinatiatenadgraphic
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parameters that produce matrix model estimates that are also consistent with observed allometric
relationships.

The particular allometric relationship we usehis approximate constancy (invariance) of
the product of ,ax and the associated generation length (in years) for a-stgblpopulation
growing atrmax.2I' his generation length has previously been termed the “optimal” generation
lengthbecaus@eneration time depends on conditions, ik occurs when conditions are
optimal (Niel and Lebreton 2005); e.g., high survival combined with relatively early &igs at
reproduction as might occur in resource-replete conditions for a low-density population.
Indicative ‘of the general nature of this relationship, we denote optimal geneeatyim Using a

generic symbolT,p:) not tied to any specific calculation; however, our actual calculations were
based on optimal mean generation length > " il, f , whésehe survival probability

from birth't6"age andf; is the annual fecundity at agd_eslie 1966, Niel and Lebreton 2005),
as it is relatively insensitive to senescence (Niel and Lebreton 2005), whitficidtdo model
for the data-poor populations included in this study. The approximate constan@yTgf: is
based on multiplying distinct allometric relationships for each variable. Allometric relationships
are of theformp=aM™ , wher®l is body mass is somecharacteristic, and andx are
constants;these describe broad trends observed across species-pQuestexponents are
common in allometry (Savage et al. 26P4and forr max andTop: the exponents are nea.25
and 0.25, respectively. Multiplyingehtwo allometric relationships leads to the expected
relationshipspreviously described (Lebreton 1981, Fowler 1988, Charnov 1993, Niel and
Lebreton 2005):

FrasTop ™ A (1)
wherea,; = a,ap/anda,, ar are the constants in the allometric egurad for intrinsic growth rate

and generationitime, respectively. The constancy,of is assumed to hold within homogenous

taxonomic groups independent of body mass, but may vary between taxa. For example, Niel and

Lebreton (2005)emonstrated that, T, ~ 1 for 13 wellstudied bird species (from diverse taxa

and spanning a large range in body sizes) whose populations were assumed to be growing under

nonlimiting resource conditions.
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Niel and Lebreton (2005) and Dillingham (2010) combined Eq. 1 with specific
population models that allow estimationrgfy with limited demographic data for archetypical
populations. For example, Niel and Lebreton (2005) use a simple age-based matrix Inevdel w
adult survival §) and £cundity {, female offspring per female per year) are constant from the

age at first reproduction), referred to as the constdetundity mode(Dilli ngham 2010). For
a matrix ofithis'form, mean generation time (Leslie 1966) reducié’%taﬂ/(x—s) (Niel and

Lebreton 2005) and, combined with the allometric model, provides the eqgimatibe
demographic invariant methpdIM (Lebreton 2005, Dillingham 2010):

-1
AN = exp{aﬂ, (OL+ S /(KE?X’I = S0 )) } (2)

In this'eontextp should represent the age at first reproduction under nonlimiting resource
conditions=ifarr is known (e.g., for birdsa,r = 1; Niel and Lebreton 2005), then intrinsic
growth can be calculated, at least approximately, with minimal demographiesiiagaEq. 2.
That is, due to the structure of the matrix model and the requirement.4fla: = 1 (for birds),
the only demographicgpameters required to calculatgx or Amax areo ands; all other
parameters-arerimplied by the model. Dillingham (2010) derived similar equations for a more
biologically realistic model (termed thearying-fecundity modglthat allows fecundity to
increase over a number of age clas$es requires some additional information on fecundity.
Dillingham (2010) also noted that the varying-fecundity model can be approximated by the
constantfecundity model it represents a typical (e.g., near the mean or median) age at first

reproduction rather than the earliest age that some animals reproduce.

Our analysis has two parts. First, we develop two new methods to estipdiy
integrating matrix and allometric (i.&maxTopt iNVariance) models. Second, we esepirical
data to examine the constancyr gfxTopt for mammals and sharks in an effort to evaluate the
taxonomic generality of the relationship that was demonstrated for birds by Niethretdn
(2005); the outputs of this metaralysis are needed topp the estimation methods to real

populations:

The firstr max €stimation method, which we term thieexactmethod for amT-ideal
population, describes the population growth of an archetypical population. This methodsassume
that the population follows the allometric model exactly. We show how straigyiatidr
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computational methods allow usdeneralizéhe approaches of Niel and Lebreton (2005) and
Dillingham (2010) to allow other matrix population models to be used, estimate théeekpec
value forrmax even when a point estimate of optimal (i.e., maximum) adult surgyal i6
unavailable, and incorporate all available demographic information to informsteBuét second
method, termed theT-adjustedmethod, incorporates estimates of process vagigoapulation-
level variation)dn the maxTopt relationship, appropriate for describing individual rather than
archetypical'populations. For this method, we use allometric relationships tovartpe
precision of'matrix model results by adjusting estimabevardr T-exact estimates and
generating more realistic estimates of uncertainty,i but still allow individual populations to
vary from thesallometric expectation. To demonstrate the applicability ditg otithese two
new methods,we include a demonstration application of our approach to two case studi
regarding management and population viability of an archetypical pelagic sgedbieds of the

genusProcellaria) and white sharkQJarcharodon carcharias).

Model develepment

The two new max estimation methods rely on simple variants of Eq. 1. The first method,
therT-exact. method, describegax for an archetypical, arT-ideal, population, where Eq. 1 is

exact. Thus forT-ideal populations

rmaxTopt = arT' (3)

AltheughtherT-exact method is useful to describe growth rates for archetypical
populations; slight departures from this relationship are expected for individuahpopst To
allow individual populations to vary from Eg. 1, we can assume that the variabiiynslly

distributed and model the product of intrinsic growth and optimal generation time as

r T wN(a Gﬂ,) 4)

max " opt T2

wherea,t 1s the allometric constant and o, IS the populatiorievel standard deviation, which
describes the amount of true variation asrpopulations around the theoretical prediction for

I maxT optifAlthough Eq. 4 has advantages of simplicity, it does theoretically aj}@Wop: < O.

For combinations od,r and o, where negative values are a concern (a;gis less than
approximatel\2o,t from 0), a log-normal or truncated normal distribution could be used in place
of Eq. 4.

TherT-exactmethod.—

This article is protected by copyright. All rights reserved



TherT-exact method combines matrix models with Eq. 3 in order to pmegictor an

archetypical population. Given demographic parameters representative ofainaapulation

growth, matrix modelNIM) es.timatesrnl;’fi’I and TOﬁM are calculated, e.g., using the Euletka

equation.and.the equation for mean generation time (Dillingham 2010), along with theatprodu

Fraclow (T 7 0 "™ equalsasr, then the population isT-ideal; otherwise, it is not. Simply,

max

therT-exactamethod requires that the matrix model is fully concordant with the allometric model.

Niel'andLebreton (2005) and Dillingham (2010) both presented special cases®f the
exact method. For illustration, assume a population that follows the cofestandity model
wheresg: is theyonly unknown parameter. For bBiM and matrix models,max is then simply
a function ofsyf. The relationship between model estimates,@fandr max for DIM (i.e., Eq. 2)
and the matrix model for this illustrative population is shown in Fig. 1&,fABCreasest max
increases for.the matrix model (dashed line},decreases faIM (solid line). Becaussy is
unknown, neither method can calculatgx exactly. However, the point in Fig. 1a where these
lines intersectiis where the matrix ddtM models agree, and is the solutiondgy andr max
from therT-exact method. In short, this new approach finds the valugg: @ihdr max (USing

numerical'methods) wherg.axTop: from the matrix model equals the allometric consgant

A meresgeneric computational approachrférideal populations is to (1) put prior

distributions on all parameters, (2) simulate a large number of matrix models, and (3) then

calculate the product of growth and generation timnag](('mtw) for each; and finally, (4) keep
those iterations that satisfy the allometric themopstraint ofr, 7. " = (within an allowed

numerical‘tolerance, i.%r}m]’ OptMM —a_| <0 for some small 6) and form the posterior

distribution forrmaxTopt. FOr datarich populations, there may be relatively little uncertainty in

rmaXToptW, whereador datapoor populationsthe uncertainty would be large. Thus, uncertainty
aboutr na will reflect uncertainty in demographic rates but parameters will be constrained by
asserting thatithe population mustrbedeal. For the illustrative population shown in Fig. 1, if
there was uncertainty in parameters in additios,$o matix model methods would produce a

range of possible growth rates for each valug &fg.3 would be satisfied for all parameter sets
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that produce combinations @f Sop, andimax that also satisfy Eq. 2. Fig. 1b shorealizations
of 1000 simulated matrix models that afeexact (within & = 0.05).

TherT-adjustedmethod.—

TherT-adjusted method estimates population growth for individual populations by
combining matrix models with Eq. 4. This method relaxes ThHeleal constraint and only
assumes thataxTopt IS Neara;t, allowing for populatiorevel variation from the ideal. The first
three steps of the computational approach are the same asrféretkact méhod (i.e.,
simulating.andcalculating values for the matrix models). ForTreljusted method, step (4) is

to simulatermxj'"optA from the allometric modelX) (e.g., Eq. 4). E# is appropriate for the

allometric ‘model as long ag, 7, “ > 0 for the vast majority of iterations; otherwise, & log
normal or truncated-normal model could be used instead. In step (5), those itevatoms

r T "ignearr T A(i.e.,|r My T A
max  opt max~ opt

max " opt max "~ opt

<d) are kept and others discarded. For the

constardfecundity population described in Fig. 1, matrix model estimates that fall near &9. 2 a
kept with increasing probability (Fig. 1c), but no longer must lie on Eq. 2. In Supplement 1,
implemantation of ther T-exact and T-adjusted methods is described for the illustrative

population insFig. 1.

The tolerance, J, sets the allowable numerical error, where smaller values equate to
higher precision but increased computational time. Baseg),oal for birds (Niel and Lebreton
2005) 6 <0.05 provides a reasonable balance between speed and precision (e.g., for a
population with generation tim&,, =10 years, this corresponds to errorif.005 in rmax for

any individual iteration, with overall error reduced by the total number of iteratishsjeas
6 <0.01 is appropriate for higiprecision applications or populations with lower generation

times. The resulting, integrated estimatg¢®{ intrinsic growth, generation time, and their
product ¢, ,Zi, andr, 7. ") are derived from posterior intervals of the simulatishereas
the integated distribution for maximum annual growﬂo;gx) is calculated by transforming
guantiles Of’”iax- As a diagnostic, we also examine the distributions of ptMM and ’”maxToptA’

where limited overlap could be used as a model diagnostic, potentially indicatireglfimodel

assumptions, data errors, or an unusual population.
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Estimating allometric parameters for birds, mamimatsl sharks

We gathered data for birds, mammals, and sharks to estimate allometric parameters for
each group. Niel and Lebreton (2005) noted that Eqg. 1 could be rewritten

aslogt, »===l0gT , loga .. They therefore modeled the data]ﬂiogrm)z Plog7  +loga,

opt
and ran aregression to test the assumpff = —1. The authors then estimatad by back-

transforming.the intercept in a revised model with the slope forced t6g.4 is a similar but

simpler modekand is a natural extension of Eq. 1. Further, it eliminates pbyefitfadult

choices about which regression method to use (e.g., ordinary least squaresr(@tSaxis, or
standardize@najor axis for discussion, see Warton et al. 2006, O’Connor et al. 2007). However,
the log—log.regression provides an easy way to examine relationships not evident from Eq. 4. For
example, in"‘an-allometric analysis of basal metabolic rate and mass, Kotasgat al. (2010)

were able'to find previously undetected curvature and a body temperature effeagby usi

regression methods withanlog—log regression.

Wertherefore modeled data using both the log—log regression and the simpler method
based on Eq.4. The logg regression was designed to examine general linearity and whether
the slope'was neatl, and Eq. 4 was used to actually estimatea,t and o,7. Becausehe first
method.was used for basic diagnostics only, rather than adjusting the degrees of fneedom
otherwise modeling phylogenetic dependence, we simply note that the standard errslopiethe
from OLS estimates may be undeifmated if the dependence is strong, but other values (e.g.,
the estimatéd'slope amd) are appropriate for estimatingax conditional orl o, (O’Connor et
al. 2007). Weralso note that the corresponding estimate of o, from Eg. 4 will include the
intrinsic populationlevel variability (i.e., process error) that we are interested in, but also

includes measurement error and possible sources of rhagett bias. Therefore, the actual

populationlevelvariability isprobably <6 _ .

Forbirds; we used the data from Niel and Lebreton (2005). For mammals, we used
empiricalrmax estimates from count data for fagbwing populations for 41 out of 64 species
compiled by Duncan et al. (2007), including 10 orders of mammals and rangingfrosize
rodents and lagomorphs to elephants and baleen whales. Data for the other 23 species did not
satisfy inclusion measures for our analysis (brigflyx < 2,0 > 0.5, and < 1 when calculated
by the characteristic equation; see Appendix A for detdlNg) compiled female age at first
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reproduction and fecundity estimates from other published databases for the mammals (Ernest
2003, Jones et al. 2009, Tacutu et al. 2013), with the merged data available in Supplement 2 for
the 41 included species. To calculate generation time, survival estimates are also required.
However, age- or stagspecific survival estimates were not available, so we assumed a single

annual survival rate through life and found this rate by solving the charactegstton fors:
3¢ — 5.7 yfl=0, where = exp(r) and /, = s*. The simplifying assumption of a single

survival rate is a suitable proxy for age-structured survivorship for purposesyadtesir and

allometric relationshipg.ynch and Fagan 2009). We then estimated optimal generation time as

Ty=0o+ s/(k— s) (assumingy, s, were estimated for optimal or negptimal conditions) using

the mean'generation length (Leslie 1966) and an assumption of constant fecundity from age a
first reproduction (Niel and Lebreton 2005, Dillingham 2010), and performed a log—log analysi
sensu Niel'and Lebreton (2005) to estimate the regression slope and confitiwaisatlose to

—1. We then used the simpler Eq. 4 to estimate the allometric parameters.

Fowsharks, we used estimates of growth and generation time from matrix models
preseted by Cortés (2002). Developing matrix models for sharks is challenging due to the lack
of empirical.survival estimates for this taxon. In their place, Cortés (2002) used indirect
estimators*developed primarily using data for teleosts, whose applicagtasmobranchs has
not been empirically justified (Kenchington 2013). Cortés (2002) combined severadriffe
estimators.and used the differences between them as one approach to estimating uncertainty in
survival. Therefore, the estimates for sharks lgaeater measurement error and potential
sources of‘bias than the estimates for birds or mamlgh@ugh the values from Cortés (2002)
may be broadly interpreted as estimates of intrinsic growtheeagnizetheir limitations. For
example, some_ estimatef intrinsic growth were <0, and estimates of uncertainty were
conditional.on.the assumed models for survival. We éimasyzedhe data to look for general
consistency.with the ledog analysis and Eq. 4 and general similarities in parameter estimates
between sharks, birds, and mammals. Using only those populations where the estimate of

I > 0 ledte:32 of 41 populations in Cortés (2002) for inclusion in the log—log analysis.

Because Cortés (2002) provided uncertainty estimates for population growth ratesevedls
to perform an additional analysis to estimate n@amand the population-level variation in this

parameter (o,7) by adjusting for measurement error jx (see Appendix A for details).
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Case studies

TherT-exactmethod for petrels.—

Many petrel species (Family Procelliidae) are listed as threatened by the International
Union for-=Censervation of Nature (IUCN) due to incidental capture (bycatchhindigear
(BirdLife International 2013). Because of these impacts, empirical estimates of survival, where
available, incorporate anthropogenic mortality and therefore do not represamigiahaximum
survival. For example, recent survival estimates foMge-chinned Rtrel Procellaria
aequinoctialis)are very low (<0.90) compared to similar, less impacted species (Barbrdud et a
2008). Onesseolution is to esurvival estimates from congeneric species at lower risk from
bycatch (e.g:, Barbraud et al. 2009, Dillingham and Fletcher 2011) to estjpab® Amax, and
recognize that the estimates may be biased as a result or treated as an approximation. As an
alternative. approach, we demonstraterfiexact method for an archetypidlocellaria

species.

In this example, we compare estimate&qf from matrix,DIM (i.e., Eq. 2), andT-

exact methodsX(" , >, and 1" ), and also estimate optimal survival usingrthiexact
method (s:gf). Our purpose is to compare the sensitivitiesQk to a,r and the demographic

parameterssamong the three models to identify thassngeters that, for a given level of error,
most influence point estimatesiafa. By combining knowledge of sensitivities with estimates
of parameter-tncertainty, this type of analysis can help a resetraetermine which model is
most appropriate for their data; for example, models that are sensitive to paramat¢terge
large associated uncertainties would be expected to perform poorly.

We first'built a matrix population model for a gend?rocellaria species. We then
selected parameter valugsdxamining relevant speciegecific estimates available from
primary or secondary sources (Brooke 2004, Barbraud et al. 2008, Fletcher et al. 2008,
Dillingham et.ak 2012, ACAP 2013, BirdLife International 2013), with specificildedascribed
in Appendx.A. The resulting matrix was then used to estinsgieandimax using ther T-exact
method, assuming,, =1 based on the estimate from Niel and Lebreton (2006)-&xaet

estimate ok, was used for the matrix model abtM appoaches to estimaienax.

Sensitivities ofimax to model parameters were then calculated using numerical derivatives.
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TherT-adjustedmethod for white sharks.—

To demonstrate thel-adjusted method, we built a matrix population model for the
eastern north Pacific population of white shark. In 2012, this population was petitionstrgr |
under the'U.S. Endangered Species Act. The National Oceanic and Atmosphenédtian
(NOAA) convened a Biological Review Team (BRT) of government scientists to evaluate
relevant scientificsinformation and provide an assessment report (Dewar et al. 2014) that the
Agency used to determine whether the white shark should be listed as a threatened oreshdange
species (the decision was to not list the species; 78 Fdtlegadter 40104-40127). The
populationwiability analysis for the BRT assessment was partially based on estinmatgs of
derived using our methods as presented here. We began by building a demographic matrix model
for the white shark, but parameter uriagity meant that matrix model results, by themselves,
were unsatisfactorily imprecise. Therefore, in combination with the nratidel, we used the
estimates of-allometric parameteasr( o,7) for sharks (i.e., based on our analysis of the data
from Cortés«(2002)), informed by estimates from the other, talxech had higher data quality, to

providerTradjusted estimates of intrinsic growth.

Fewsvital rates are known precisely for whitats, but variously informative priors can

be placed on all key parameters (see Appendix A for details). Drawing parameters from these

gM:M

. that does not

distributions provides a prior distribution for matrix model parameter

take the allometric model into account. To incorporate the allometric model, we matched each

matrix modeél draw with one from the allometric model (7, .*), but used a log-normal

distribution in place of Eq. 4 so thataxTopt > 0. Similarly,we accounted for uncertainty in 6,1
by sampling from a log-normal distribution with a CV based on our analysis of the Cantkés sh
data (Cortes=2002). Those iterations where the allometric and matrix ragdedsl formed the

integratedr T-adjusted postest distribution.

Analyses were performed using R 3.0.1 (R Development Core Team 2013). For the
Bayesiamanalysis of the Cortés (2002) shark data, the OpenBUGS variaon(8e2s2;
Thomas et al. 2006) of BUGS (Lunn et al. 2000) was linked to R usirR2MenBUGS library
(Sturtz et al. 2005), with estimates based on four chains ®0R6G€rations with the first 10000
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iterations discarded and thinning set to 100, with good convergence diagnostics and low Monte

Carlo error.

Results

Estimating,allometric parameters for birds, mamimetsl sharks.—

All three taxonomic groups showed strong relationships betwgg@andTop: (Fig. 2),
with R? from the log-log regression equal to 0.96, 0.91, and 0.72 for birds, mammals, and sharks,
respectively. In‘each case, the estimated slope was cle$ewdth estimated slopes ( and 95%
confidencgnterval) equal t6-0.93 £ 0.12 (birds), —0.99 + 0.10 (mammals), and —0.96 £ 0.46
(sharks). Boti® and precision were lowest for sharks, which was expegteen the

uncertainties in'the matrix model estimates @ for them.

The allometric constants were similar for all three taxa, &ith=1. Estimates of,,

from Eq. 4 were 1.07 + 0.09 (birds), 1.17 £ 0.09 (mammals), and 0.97 £ 0.25 (sharks). The
associated 'standard deviations, o,t, were estimated as ®&.1birds), 0.30 (mammals), and 0.69
(sharks);-aceounting for all sources of noise (i.e., populdiegl-variability and measurement
error, as well.as any modeased bias). When using the Bayesian model to adjust for

measurement error for sharlk&, = 0.84 (95% credible interval 0.65 to 1.05) and the remaining

error reduces té  =0.41 (0.23 to 0.61). For an animal with a generation time of 10 years or

more, thisiSuggests that variatiorr iy among populations grobably <0.04 for any of these

taxa.
Casestudydl: petrels—

For therT-ideal population based on the demographiratellaria petrels, we treated
Sopt @S Unknown and other parameters as known, and calctilage@ct estimates of population
growth (A" ).and optimal survivals{’). Using s, in a matrix model an®IM (Eq. 2)

oML o) to demographic

allowed us toreompare sensitivities of three point estimaidnf§ G

ax

parameters to analyag@proximate model performance. Tifieexact estimate of the maximum

growth rate whera,; =1 is lf:x =1.070 (or rnjij =0.068) and thecorresponding estimate of
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#Te

optimal survival iss
opt

=0.947. The estimates Gfnax andsep: are very similar to those presented

by Dillingham and Fletcher (2011), who estimasgd~ 0.94 using empirical data from a
number of petrel species ahgax = 1.074 using DIM.

For therT-exact method wher®,; is unknown, intrinsic growtlvas most sensitive to
a,r and the proportion breeding)( and least sensitive to age at matuxty]Table 1).
Sensitivities were always smaller when usingriihexact method compared to the matrix model
or DIM for shared parameters. Hence, relative model performance depends on sensitivities and
uncertainties for those parameters not in common. Compared to the matrix moaehabiean
Amax Of error inSy,: of 0.01 in the matrix model is equivalent to the impact of errafiof 0.15
in therT-exact nethod, if the other parameters were known without error. Compaf@id/ito
estimates;theT-exact method has three additional parametgrs£, which are the ratios of
younger agesfass survival rates to adult survival, dgdee Appendix A) not used BIM,
while DIM{ has one parametes,f;) not used by theT-exact method. Because ttieexact
method is insensitive toy, ¢, andk, andDIM is highly sensitive tgo, error of 0.10 in each of
C1, C2, andk (in the worst case where all errors are inghme direction) has the equivalent
impact of-errorof 0.016 iBy,. From a management perspective, this means that-#eact
method would-be expected to outperfddiv in most settings. The exceptions would be where
C1, C2, andkare highly uncertaior wheresqp,; is measured with high precision.

Casestudy2: white sharks—

Distributions forimax from the matrix model only, allometric model only, and e
adjusted method that integrates both models are in Fig. 3. For this example aye-deénd
sampled from a logormal distribution with average populati@vel varations . =0.4 (see
Appendix’Afor details). The valua, =1 is consistent with the estimate from either Eq. 4 or the

Bayesian model that adjusted for measurement error for sharks (see Appendix A), as well as the
value for the ether taxa with higher quality data. Thedjusted distribution reflects uncertainty

in matrix'model parameters, but constrains the uncertainty so that Eq. 4 is satisfied. While still
allowing for population-level variability, Fig. 3 showsthonstrained distribution that results

from incorporating allometric trends with the matrix model. Thadjusted posterior

distribution forAmax for white sharks has a mean of 1.050, SD = 0.017, and 95% credible interval
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of 1.022 to 1.091. By comparisgtie distribution ofmax for the matrix model alone had a mean
of 1.059, SD = 0.028, included negative values, and had a substantially wider 95% credible
interval (1.008 to 1.114) that included unrealistically small values. The variantte far
adjusted distribution was only 37% that of the variance for the matrix model (i.e%/0.02&

= 0.37), contains no negative values, and the credible interval representsausitde range,
showing the benefits of th@-adjusted model compared to a matrix model forc¢hise tidy.

Discussion

Generating robust estimates for demographic parameters,gnah particular, for long-
lived species Is a priority for both ecological research and conservation appsc&stimating
intrinsic growth'from matrixnodels provides populatiagpecific estimates, but precision can be
unsatisfactory'when important demographic parameters such as survival are unavailable or
measured'with low precision. Here, we have presented two new methods that combine
demographic information used for matrix models with broader ecological understanding
garnered from empirical allometric relationships to generate improved estimates of intrinsic
growth rates. The first -exact) method provides estimates of intrinsic growth for whatae ¢
anrT-ideal"population (e.g., the expected growth rate for an archetypical population with a
particular combination of adult survival and maturation age). The secbsadljusted) method
acknowledges that species may vary from some theoretical expectat thus incorporates
process efror in the allometric constamt) to generate distributions for intrinsic growth that
reflect this natural variability. These methods can be applied generally, but are especially
applicable for data-poor populatiorist which neither matrix models nor allometric models are
fully satisfactory. As our case studies demonstrate, our methods provide biolagieaiyngful

inferences about species life history parameters, and can inform conservation and management.

As with.all models, our approach depends on empirically validating the theoretical
predictionwith.data; i.e., that the produghxTopt IS @approximately invariant. Our megenalysis
of data for.birds, mammals, and sharks indicates that the theory is well-sgpaponbss several
taxa with expectedmaxTopt = 1 across the full range of generation lengths included in the data
sets. Data types and the amount of data used to evaluate this taxonomic geaeieditoy
taxon. For birdst nax estimates were generatedm matrix models for rapidly growing

populations for which higlguality demographic data were available, and a broad suite of taxa
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were represented (Niel and Lebreton 2005). Estimates,fofor mammals were based on count
data for dozens of rapidly égneasing populations, although the dsgawas taxonomically biased
toward certain orders with relatively high growth rates (e.g., many ungulate angoarni
species, few bats or primates). For sharkg, was calculated from matrix models that relied o
multiple indirect survival estimators derived for teleosts (Cortés 2002). These differences suggest
that estimates.of the allometric constants are most reliable for birds and least reliable for the
data-poor'sharks. For tin&-adjusted method, quantifygrpopulationtevel variation o,t and
accounting for'that variation in predictive models is also required. For birds andalgmm
relatively highquality data suggest that estimates of o1 primarily reflect the populaticitevel
variation thatwe are intereesl in, but still incorporate some amount of measurement error. For
sharks, wewere able to separate some of the measurement error from pojayelieariation

by adding an additional component to our model, but overall data quality was lowest for this

taxon.

Givenravailable data and the limited number of taxa studied, it is unknown whether

a, ~1is general across all animal taxa or whether the similarities between values for these taxa

were coingcidental or only apply to relatively long-lived species (noting thattetacterized by
truly rapid growth potential such as teleosts or insects were not includeslanalysis, nor were

mammals‘that'mature younger than 1 year and have multiple litters per year). It is also unclear

whetter the larger estimate of . for sharks was a result of modgsed bias and uncertainty,

or possibly represents additional variation caused by greater phylogenetsitgioer

poikilothermy in that taxon. This suggests two areas of future research: (1) exqadditional
taxonomicrgroups to better explore the generality of our findings, and (2) determiningetite eff

of modetbased assumptions (e.g., from the use of indirect survival estimates) on the estimates of

the allometrigparameters for sharks.

TherT-exact method, designed to estimate intrinsic growth for a typical population by
combining.all'available demographic data with knowledge of allometric patteragowad to
yield robustiestimates of,ax for a longhived sealrd, even when important demographic
parameters (e.g., survival) are poorly known. In fact, although our focus is on estirpatinge
note that this method also can be used to estimate optimal survival and other demographic
parameters. Compared to malBsuch a®IM or matrix models that rely heavily on estimates
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of adult survival for londived populations, theT-exact method is relatively insensitive to its
parameter inputs and therefore error in any one has limited impact on the estimate\Wwe

primarily focus on the effect of survival due to its importanc@lid and matrix models, but
estimation of other demographic parameters can be challenging fdiMedgpecies (e.g., age

at first reproduction). In settings where survival is estimatellamnd other parameters poorly,
therT-exact method would yield essentially the same estimatefiasvhen using the constant-
fecundity model. For data-poor populations that have reproductive information availadble

where estimates of survival are paosrimpacted by unquantified anthropogenic mortality, the
rT-exact method would perform especially well compared to the ofbEvsand matrix

methods riskdarge bias mhax Whensg,: is measured poorlyyhereagherT-exact method

reduces this'risk by king advantage of the opposite directions of those biases. This is especially
important in conservation settings that use reference point (e.g., mortality limit) estimators based
oNnrmax. For example, PBR, which has also been adapted for seabirds andlesgDillingham

and Fletcher 2008, 2011, Curtis and Moore 2013, Richard and Abraham 2013), includes the

parameteiR= exp( ., )— L and is <0.10 for many of the lotiged marine megafauna to
which it is applied (Moore et al. 2013). Smalleesin R, translate to large proportional errors

in the PBR, and therefore can have large management impacts (Dillingham 2010).

The second methatiatwe present, theT-adjusted method, extends the first by focusing
on individualrather than archetypical populatioddthoughtherT-exact method is useful for
predicting how we expect an archetype to behave and may be sufficient for many apgplication
these predictions may not be sufficiently accurate for individual populationgiffieatfrom the
expectationyinwhich case population-level variation.igx with respect t@ maxTopt Must be
accounted forFor these settings, theadjusted method uses allometric patterns to adjust
matrix model estimates of population growth towine allometric ideal, but still allows for
variation from it: The amount of adjustment depends on the distance between mattix mode
estimates of maxl opt and the allometric constant, the precision of matrix model estimates, and the
normal level of variatio from the ideal expected within a taxon. Although our analyses provide
initial estimatesdr o7 for three taxa, these estimates include sampling variance and thus
overestimate populatiolevel variance. Future research that improves the precision of these

estimates would make these methods even more useful.
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Like any method, these methods should be used with care. Altlloeighimary purpose
of therT-adjusted method is to improve precisior @fx estimates by using all available data, it
also naturally removes inconsistencies between allometric and matrix models. However,
inconsistencies_codlhighlight data or model errors, or an interesting population that does not
follow the allemetric trend. For example, inconsistencies between allometric and matrix models
could be arelatively simple way to identify whether the survival estimate usetigiplly
suboptimal:"We'therefore recommend that estimates from matrix and allometric models be
comparedto'each other and to the integrated estimates fraftaldgusted method (as shown in
Fig. 3 for white sharks) as part of a quality control process.
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Fig. 1. merted relationship between optimal adult survegg) @nd intrinsic growth
(rmax) for

that theﬂ of intrinsic growth and optimal generation trg{opt) iS approximately a
constanMwenrmaxTopt =a;t (Eq. 3) (ab), we term this anT-ideal population and
consider :)resent an archetypical population. Irs{g)is the only unknownyhereasn

(b, c) theresi certainty in multiple parameters. In (a)rThexact solutior(single dot)occurs

where m model solutiodgsed ling intersects the allometric solutioso{id line, the
demographicimyariant methpDIM; Niel and Lebreton 2005). In (b), multiple demographic

and allometric models can be used to pregigt The allometric model states

parameter combinations from the matrix model within a small tolerance (6 = 0.05) of DIM are
rT-exact(black dots)while otherggray dots) are not. In (c), tm&-adjusted method allows

individual species to deviate from beingideal ¢ maxTopt ~ N(i, 0% Eq. 4), with iterations near
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DIM more likely to be accepted (black datsan not(gray dots), but popations are not
required to beT-ideal.

Fig. 2. Log-log regressions of optimal generation tirfig,f vs. maximum growth rate {ax)
for (a) birdsm()’mammals, and (c) sharks. The regression slopes were keid@redicted by

Eq. 1, andfthe regressifinonly the intercepts.

Fig. 3. sDistributions forimax for white sharks using matrix model (blackIM (oper), andrT-
adjusted graymmethods. Distribution of matrix model estimates solely reflects measurement
uncertainty in matrix model parameters. Egfedinax Valuesfrom the allometriecbaseddIM

are calculatedgusing the estimator of Niel and Lebreton (2005) and incorporateipopulat
variability ¥g@mgthe allometric constara,¢ = 1, o, = 0.4, CV(o,71) = 0.35, generated from a log-
normal distribution) as well as uncertainty in age at first reproduatjoand optimal adult
survival Gopy). The distribution from theT-adjusted method accounts for uncertainty in all

demographic parameteiadjusting for allometric patterns and population variability.

Table 1. fSensitivity okmax to the allometric constand ), adult survival §), ratios of
breeding success and juvenile survival to adult survesat{), age at first reproduction), and
proportion‘ef.adults breeding)(for an archetypicdProcellaria sp. petrel using three types of
models;
Parameter Modeltype

Matrix DIM rT-exact

arT na 0.106 0.073
S P30 -0.512 na

C1 0.091 na 0.028
C2 0.081 na 0.025
a =0:009 —-0.008 —0.008
k 0:097 na 0.030

Notes: DIMsdeNOtes the demographic invariangtimod. Sensitivities were calculated based on
the values,7=al,5=0.947c,=0.8 ¢, =0.9 a =7 andk = 0.75.
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